
MERGING, SORTING AND SEARCHING 

 

Sorting alone has been said to account for more than 30% of all 

computer time spent. Sorting and merging provide us with a means of 

organizing information to facilitate the retrieval of specific data.  

Sorting refers to ordering data in a set to a predefined ordering 

relation i.e either increasing or decreasing fashion according to some 

linear relationship among the data items.  

The two most common types of data are string information and 

numerical information. Sorting can be done on names, numbers and 

records. The ordering relation for numeric data simply involves 

arranging items in sequence from smallest to largest (or vice versa) 

such that each item is less than or equal to its immediate successor. 

This ordering is referred to as non-descending order. The items in the 

set below have been arranged in non-descending numeric order.  

   {7, 11, 13, 16, 16, 19, 23} 

Sorted string information is generally arranged in standard 

lexicographical or dictionary order. The following list has been 

arranged in dictionary order 

    {a, abacus, above, be, become, beyond} 

For example, it is relatively easy to look up the phone number of a 

friend from a telephone dictionary because the names in the phone 

book have been sorted into alphabetical order. 

Searching methods are designed to take advantage of the organization 

of information and thereby reduce the amount of effort to either locate 

a particular item or to establish that it is not present in a data set. 

 



Sorting algorithms usually fall into one of two classes:  

1. The simpler and less sophisticated algorithms are characterized by 

the fact that they require of the order of n2  comparisons (i.e. 0(n2)) to 

sort n items. 

2. The advanced sorting algorithms take of the order of n log2 n (i.e. 

0(n log 2 n)) comparisons to sort n items of data. Algorithms within 

this set come close to the optimum possible performance for sorting 

random data. 

The advanced methods gain their superiority because of their ability 

to exchange values over large distances in the early stages of the sort. 

It can be shown that, on average, for random data, items need to be 

moved a distance of about n/3. The simpler and less efficient methods 

tend to only move items over small distances and consequently they 

end up having to make many more moves before the final ordering is 

achieved. 

No one sorting method is best for all applications. Performances of 

the various methods depend on parameters like the size of the data set, 

the degree of relative order already present in the data, the distribution 

of values of the items, and the amount of information associated with 

each item. For example, if the data is almost in sorted order, the 

bubblesort (which is normally the least efficient for random data) can 

give better performance than one of the advanced methods. 

 

 

 

 



 

Problem  

Merge two arrays of integers, both with their elements in ascending 

order, into a single ordered array. 

Algorithm development  

Merging two or more sets of data is a task that is frequently 

performed in computing. It is simpler than sorting because it is 

possible to take advantage of the partial order in the data. 

 Consider the two arrays: 

 

A little thought reveals that the merged result should be as indicated 

below. The origins (array a or b) are written above each element in 

the c array. 

 

c is longer than either a or b. In fact c must contain a number of 

elements corresponding to the sum of the elements in a and b (i.e. 

n+m). 

To maintain order in placing elements into c it will be necessary to 

make comparisons in some way between the elements in a and the 

elements in b. 



To merge the two one-element arrays all we need to do is select the 

smaller of the a and b elements arid place it in c. The larger element is 

then placed into c. Consider the example below: 

 

The 8 is less than 15 and so it must go into c[1] first. The 15 is then 

placed in c[2] to give: 

 

As an element is selected from either a or b the appropriate pointer 

must be incremented by 1. This ensures that i and j are always kept 

pointing at the respective first elements of the yet-to-be-merged parts 

of both arrays. The only other pointer needed is one that keeps track 

of the number of elements placed in the merged array to date. This 

pointer, denoted k, is simply incremented by 1 with each new element 

added to the c array. 

One approach we can take with this problem is to include tests to 

detect when either array runs out. As soon as this phase of the merge 

is completed another mechanism takes over which copies the yet-to-

be-merged elements into the c array. An overall structure we could 

use is:  



 

 

    

c=   

8 11 15 16 17 18 42 44 51 58 71 74 

 

ALGORITHM DESCRIPTION 

procedure merge  

1. Establish the arrays a[1.. m] and b[1.. n].  

2. If last a element less than or equal to last b element then  

(a) merge all of a with b,  

 (b) copy rest of b,  

else  

(a') merge all of b with a, 

 (b') copy rest of a.  

3. Return the merged result c[1..n+m]. 

 



 
 

 

 
 

 

 
 



 

A place to start on this new line of attack is with the segment that had 

to be copied in our example. We see that the largest value from the a 

and b arrays ends up as the last value to be merged into the c array. If 

for a moment we imagined that the largest value on the end of the a 

array were a 74 then the merge would progress in such a way that 

completion of c would occur when the ends of both a and b were 

reached. That is, 

 
The largest element in the two arrays is present on the ends of both 

arrays then the last two elements to be merged must be the last 

element in the a array and the last element in the b array. With this 

situation guaranteed we no longer have to worry about which array 

runs out first. We simply continue the merging process until (n+m) 

elements have been inserted in the c array. 

 

 



 
A single procedure mergecopy can be used to implement these 

merging and copying steps. The merge and the copying operations 

can also be implemented as separate procedures. In the merging 

process it is possible that the two arrays do not overlap. When this 

happens the a and b data sets should be copied one after the other. 

After determining which array finishes merging first it is then a 

simple matter to determine if there is overlap between the two arrays. 

A comparison of the last element of the array that finishes merging 

first with the first element of the other array will establish whether or 

not there is overlap. For example if a ends first we can use: 

 



 

 

 

 
Supplementary Problems 

5.1.1 Implement the first merging algorithm that was developed.  

5.1.2 Design and implement a merging algorithm that reads the data 

sets from two files of unknown length. Use end-of-file tests to detect 

the ends of the data sets.  

5.1.3 Design and implement a merging algorithm that uses only two 

arrays. It can be assumed that the sizes of the two data sets are known 

in advance. An interesting way to do this is to place the array with the 



biggest element so that it fills up the output (merged) array. The 

following diagram illustrates the idea (the b array has the largest 

element).  

This simplifies the merge because when the merging of a is com-

pleted the remaining elements of b will be in place.  

5.1.4 Design an algorithm for merging three arrays. 

 

 
Problem  

Given a randomly ordered set of n integers, sort them into non-

descending order using the selection sort.  

Algorithm development  

An important idea in sorting of data is to use a selection method to 

achieve the desired ordering. In its simplest form at each stage in the 

ordering process, the next smallest value must be found and placed in 

order. Consider the unsorted array: 

 

 
What we are attempting to do is to develop a mechanism that converts 

the unsorted array to the ordered configuration below: 

 
Comparing the sorted and unsorted arrays we see that one way to start 

off the sorting process would be to perform the following two steps:  

1. Find the smallest element in the unsorted array;  

2. Place the smallest element in position a[1]. 



 

 
To achieve these two changes we need a mechanism that not only 

finds the minimum but also remembers the array location where the 

minimum is currently stored. That is every time the minimum is 

updated we must save its position.  

This step can be added to our previous code:  

 

 

 



 

 
Notes on design  

1. In analyzing the selection sort algorithm there are three parameters 

that are important: the number of comparisons made, the number of 

exchanges made, and the number of times the minimum is updated. 

The first time through the inner loop n-1 comparisons are made, the 

second time n-2, the third time n-3, and finally 1 comparison is made. 

The number of comparisons is therefore always: pc= (n -1) + (n-2)+ 

(n —3)+ +1= n(n —1)/2  (by Gauss' formula)  

The number of exchanges is always (n-1) because it is equal to the 

number of times the outer loop is executed. Calculation of the number 

of times the minimum is updated involves a more detailed analysis 

since it is dependent on the data distribution. On average it can be 

shown that there are (n loge n+ en) updates required for random data. 



2. Of the simple sorting algorithms the selection sort is one of the best 

because it keeps to a minimum the number of exchanges made. This 

can be important if there is a significant amount of data associated 

with each element.  

3. In this design we saw how a complete algorithm is built by first 

designing an algorithm to solve the simplest problem. Once this is 

done it can be generalized to provide the complete solution.  

4. The number of comparisons required by the selection sort can be 

reduced by considering elements in pairs and finding the minimum 

and maximum at the same time. Some care must be taken in 

implementing this algorithm. 

5. There are more sophisticated and efficient ways of carrying out the 

selection process.  

Applications  

Sorting only small amounts of data—much more efficient methods 

are used for large data sets. 

Supplementary problems  

5.2.1 Sort an array into descending order. 

 5.2.2 Implement a selection sort that removes duplicates during the 

sorting process. 

 

 

   
Problem  

Given a randomly ordered set of n numbers sort them into non-

descending order using an exchange method.  

Algorithm development  

Almost all sorting methods rely on exchanging data to achieve the 

desired ordering. The method relies heavily on an exchange 

mechanism. Suppose we start out with the following random data set: 



 
Sorting is a way of increasing the order in the array. The first two 

elements arc "out of order" in the sense that no matter what the final 

sorted configuration 30 will need to appear later than 12. If the 30 and 

12 are interchanged we will have in a sense "increased the order" in 

the data. This leads to the configuration below: 

 
The investigation we have made suggests that the order in the array 

can be increased using the following steps:  

1. For all adjacent pairs in the array do 

 (a) if the current pair of elements is not in non-descending order then 

exchange the two elements.  

After applying this idea to all adjacent pairs in our current data set we 

get the configuration below: 

 
The repeated exchange method we have been developing guarantees 

that with each pass through the data one additional element is sorted. 

Since there are n elements in the data this implies that (n-1) passes (of 

decreasing length) must be made through the array to complete the 

sort.  



 

 

 
 

 



Notes on design  

1. The relevant parameters for analyzing this algorithm are the number of 

comparisons and number of exchanges made. The minimum number of 

comparisons is (n- 1) when the data is already sorted. The maximum number of 

comparisons occur when (n-1) passes are made. In this case n(n —1)/2 

comparisons are made. If the array is already sorted zero exchanges are made. 

In the worst case there are as many exchanges as there are comparisons, i.e. n(n 

—1)/2 exchanges are required. In the average case n(n 1)/4 exchanges are made. 

 

2. A weakness of this algorithm is that it relies more heavily on exchanges than 

most other sorting methods. Since exchanges are relatively time-consuming. 

this characteristic makes the method very costly for sorting large random data 

sets. There is, however, one instance where a bubblesort (as it is usually called) 

can be efficient. If a data set has only a small percentage of elements out of 

order a bubblesort may require only a small number of exchanges and 

comparisons. 

 

Applications  

Only for sorting data in which a small percentage of elements are out of order. 

 

Supplementary problems  

5.3.1 Use a count of the number of comparisons and exchanges made to 

compare the selection sort and bubblesort for random data.  

5.3.2 Implement a version of the bubblesort that builds tip the sorted array from 

smallest to largest rather than as in the present algorithm. 

 5.3.3 Design and implement a modified bubblesort that incorporates exchanges 

in the reverse direction of fixed length.  

5.3.4 Try to design a less efficient bubblesort than the present algorithm. 

 

 

   
Problem  

Given a randomly ordered set of n numbers sort them into non-descending order 

using an insertion method. 

 

 



Algorithm development  

Sorting by insertion is one of the more obvious and natural ways to sort 

information. It approximates quite closely the ordering procedure that card 

players often use. Central to this algorithm is the idea of building up the 

complete solution by inserting an element from the unordered part into the 

current partially ordered solution, extending it by one element. This mechanism 

is suggestive of a selection sort where we selected the smallest element in the 

unordered part and placed it on the end of the sorted part.  

We have: 

 

 
A simple, systematic, and alternative way we could choose the next item to be 

inserted is to always pick the first element in the unordered part (i.e. x in our 

example). We then need to appropriately insert x into the ordered part and, in 

the process, extend the ordered section by one element. Diagrammatically  

 
 

Algorithm description  

1. Establish the array a[1..n] of n elements.  

2. Find the minimum and put it in place to act as sentinel.  

3. While there are still elements to be inserted in the ordered part do  

 (a) select next element x to be inserted;  

 (b) while x is less than preceding element do  

  (b.1) move preceding element up one position,  

  (b.2) extend search back one element further;  

 (c) insert x at current position. 

 



 

 
 

Notes on design  

1. In analyzing the insertion sort two parameters are important. They are the 

number of comparisons (i.e. x<a[j-1]) made and secondly the number of array 



elements that need to be moved or shifted. The inner while-loop must be 

executed at least once for each i value. It follows that at least (2n-3) 

comparisons must be made. At the other extreme at most (i-1) comparisons 

must be made for each i value. Using the standard summation formula we can 

show that in the worst case  

    (n2+n —4 ) /2  

comparisons will be required. Usually the average case behavior is of more 

interest.  

Assuming that on average (1+1)12 comparisons are needed before x can be 

inserted each time it can be shown that  

    (n2+6n— 12)/ 4  

comparisons are required. The performance of the algorithm is therefore 0(n2). 

Similar arguments can be used to compute the number of move operations.  

 

2. The insertion sort is usually regarded as the best of the n2 algorithms for 

sorting small random data sets. 

 

Applications: 

 Where there are relatively small data sets. It is sometimes used for this purpose 

in the more advanced quicksort algorithm. 

 

Supplementary problems  

5.4.1 Compare the selection sort and insertion sort for random data. Use the 

number of moves and the number of comparisons to make the comparative 

study.  

5.4.2 A small saving can be made with the insertion sort by using a method that 

does other than selection of the next element for insertion. Try to incorporate 

this suggestion. 

 

 

   
Problem  

Given an element x and a set of data that is in strictly ascending numerical order 

find whether or not x is present in the set. 

 

 



Algorithm development  

The problem of searching an ordered list such as a dictionary or telephone 

directory occurs frequently in computing. 

Binary search is an efficient algorithm for finding an item from a sorted list of 

items. 

It is easy to see that in all cases the value in the set that we are seeking is either 

in the first half of the list or the second half of the list (it may also be the middle 

value in the set). For example, 

 

 
 

We can establish the relevant half by comparing the value sought with the value 

in the middle of the set. This single test will eliminate half of the values in the 

set from further consideration. Now we have a problem only half the size of the 

original problem. Suppose it is established that the value we are seeking is in 

the second half of the list (e.g. somewhere between the (n/2)th value and the nth 

value). 

 
The halving strategy that we have been considering is one of the most widely 

used methods in computing science. It is commonly known as the divide-and-

conquer strategy. The corresponding searching method we are starting to 

develop is known as the binary search algorithm. At this stage we have the 

general strategy: 



 

 

 

 



 

 
 

 


